
Algorithm Analysis

This is based on Chapter 4 of the
text.

John and Mary have each developed new
sorting algorithms. They are arguing over whose
algorithm is better.

John says "Mine runs in 0.5 seconds."

Mary says "Mine runs in 1 millisecond"

Does this mean Mary's is better?

Not necessarily. John might be sorting 100,000
items and Mary might be sorting 2. Obviously,
the size of the problem matters.

John says "Mine sorts 10,000 items in 0.5
seconds."

Mary says "Mine sorts 10,000 items in 1
millisecond."

Does this mean Mary's is better?

Not necessarily. John might be running his on a
TRS-80 from 1980; Mary might be running hers
on new MacBook Pro.

Obviously, the platform affects running time.

John says "Mine sorts 10,000 items in 0.5
seconds on a new MacBook Pro."

Mary says "Mine sorts 10,000 items in 1
millisecond on a new MacBook Pro."

Does this mean Mary's is better?

Not necessarily. John might be sorting names
taken randomly from the NYC phone book; Strings
have a fairly complex comparison method.

Mary might be sorting integers, which can be
compared quickly. Mary's data might be almost in
order before she starts.

Obviously, the nature of the data and the actual
data values matter.

John says "Mine sorts this particular list of
random strings in 0.5 seconds."

Mary say "Mine sorts the same list in 1
millisecond."

Does this mean Mary's algorithm is better?

Not necessarily, unless the only thing you are
interested in is sorting that particular data set.

Some algorithms are good on particular data
sets but bad in general.

For example, BubbleSort, which is a terrible
algorithm in general, works very well on data
which is nearly sorted.

Some algorithms work very well on small data
sets and badly on very large data sets.

So what do we do? We want some method for
comparing two algorithms that doesn't depend
on a particular machine or a particular set of
data.

There are many possible answers to that
question -- there are many possible ways that
algorithms can be compared.

The most common method is to compare the
number of basic steps the algorithm takes in the
worst-case when running on data of size n,
where n is extremely large.

This may not tell you everything you need to
know to decide if you should use the algorithm,
but at least it provides a standard basis for
comparison.

Example 1
Searching for an element in a list

LinearSearch(a, L) runs by comparing a to L[0],
to L[1], and so forth. It stops and returns true
when it finds a, or returns false when it gets to
the end of the list.

Suppose the list has size n. In the worst-case
LinearSearch does n comparisons. The worst
case comes when a is not in the list.

If L is sorted in increasing order we can do
BinarySearch(a, L). We maintain a search region
-- all of the list between index LO and index HI.
Initially LO=0 and HI=L.length-1.

At each step we compute MID = (LO+HI)/2 and
compare a to the entry of L[MID]. If a is greater
then we search the elements between MID+1
and HI; if a is lower we search between LO and
MID-1. We eventually get to a search region
with only 1 element, and it is either a or it isn't.

Note that at each step we divide the search
region in half, and we stop when it gets to size 1.

n can be divided in half log2(n) times before it
gets to 1 (e.g., if n is 16 the divisions have size 8,
4, 2, and 1 24=16, so log2(16)=4).

So BinarySearch(a, L) takes log2(n) comparisons,
where n is the size of L.

Which is better when n is really big -- n or
log2(n)??

n log2(n)

100 6

1000 (210) 10

1,000,000 (220) 20

1,000,000,000 (230) 30

It looks like log2(n) is winning here....

Example 2

Some of you know the BubbleSort algorithm.
One way to sort a list is to repeatedly make
passes from the first element to the last-1. For
each index i we compare the ith and (i+1)st

elements; if they are out of order interchange
them. Keep doing these passes until there is no
reason to do an interchange, which means the
data is completely in order.

How many steps will that take? Note that in the
first pass through the list, we end up with the
largest element in the right location. After that
there is no need to compare the last element of
the list with anything else, so we can stop the
next pass one element sooner. With n elements
in the list we do (n-1) comparisons and at most
(n-1) interchanges for the first pass. The next
pass we will do (n-2) comparisons; the next pass
(n-3) and so forth.

Altogether in the worst case we will do this
many comparisons and the same number of
interchanges:

(n-1) + (n-2) + (n-3) + + 1

It isn't hard to show that this sum comes to

n*(n-1)/2.

So we will do at most n(n-1)/2 comparisons and
at most the same number of interchanges. Each
interchange takes 3 assignment statements. So
if we think of comparisons and assignments as
both being basic operations, this means

4n(n-1)/2 = 2n(n-1) basic operations in the
worst case.

Is that good?

We need some way to categorize the running
times of algorithms. The most common way is
to look at broad categories. The thing that
stands out most for the function 2n(n-1) is that
it is quadratic. There are two aspects of this.

For one thing, for REALLY large values of n, such
as n=1,000,000 2n(n-1) is pretty much the same
thing as 2n2.

For another, what happens if we increase the
size of the list by a factor of k, from n to kn?

The number of basic operations will increase by

a factor of 2(kn)2/2n2 = k2

So increasing the size of the list by a factor of 3
increases the worst-case running time by a
factor of 9; increasing the size of the list by a
factor of 10 increases the running time by a
factor of 100.

We say that BubbleSort is a quadratic time
algorithm. Another way to say this is that the
running time is O(n2) (also pronounced "order
n2").

In general, we say that an algorithm is O(f(n)) if
there is a size N and a constant a so that for n >
N the number of basic operations the algorithm
does on an input of size n is no more than
a*f(n).

BubbleSort is O(n2) because we showed that it
does at most 2n(n-1) basic operations and 2n(n-
1) < 2n2.

Note that looking at orders of growth allows us
to make many simplifications:

5n3+3n2+177 is still O(n3)

The most common orders of growth, in order of
increasing badness, are

constant O(1)

logarithmic O(log(n))

linear O(n)

n*log(n) O(n*log(n))

polynomial O(nk) for some k

exponential O(2n)

For logarithms, note that all logs are
proportional, so it doesn't matter what base you
use for the log.

