
Algorithm Analysis

This is based on Chapter 4 of the 
text.



John and Mary have each developed new 
sorting algorithms. They are arguing over whose 
algorithm is better.



John says "Mine runs in 0.5 seconds."

Mary says "Mine runs in 1 millisecond"

Does this mean Mary's is better?



Not necessarily.  John might be sorting 100,000 
items and Mary might be sorting 2.  Obviously, 
the size of the problem matters.



John says "Mine sorts 10,000 items in 0.5 
seconds."

Mary says "Mine sorts 10,000 items in 1 
millisecond."

Does this mean Mary's is better?



Not necessarily.  John might be running his on a 
TRS-80 from 1980; Mary might be running hers 
on new MacBook Pro.

Obviously, the platform affects running time.



John says "Mine sorts 10,000 items in 0.5 
seconds on a new MacBook Pro."

Mary says "Mine sorts 10,000 items in 1 
millisecond on a new MacBook Pro."

Does this mean Mary's is better?



Not necessarily.    John might be sorting names 
taken randomly from the NYC phone book; Strings 
have a fairly complex comparison method.

Mary might be sorting integers, which can be 
compared quickly.  Mary's data might be almost in 
order before she starts.

Obviously, the nature of the data and the actual 
data values matter.



John says "Mine sorts this particular list of 
random strings in 0.5 seconds."

Mary say "Mine sorts the same list in 1 
millisecond."  

Does this mean Mary's algorithm is better?



Not necessarily, unless the only thing you are 
interested in is sorting that particular data set.

Some algorithms are good on particular data 
sets but bad in general.

For example, BubbleSort, which is a terrible 
algorithm in general, works very well on data 
which is nearly sorted.



Some algorithms work very well on small data 
sets and badly on very large data sets.



So what do we do?  We want some method for 
comparing two algorithms that doesn't depend 
on a particular machine or a particular set of 
data.



There are many possible answers to that 
question -- there are many possible ways that 
algorithms can be compared.

The most common method is to compare the
number of basic steps the algorithm takes in the 
worst-case when running on data of size n, 
where n is extremely large.  



This may not tell you everything you need to 
know to decide if you should use the algorithm,  
but at least it provides a standard basis for 
comparison.



Example 1
Searching for an element in a list

LinearSearch(a, L) runs by comparing a to L[0], 
to L[1], and so forth.  It stops and returns true
when it finds a, or returns false when it gets to 
the end of the list.

Suppose the list has size n.  In the worst-case 
LinearSearch does n comparisons.  The worst 
case comes when a is not in the list.



If L is sorted in increasing order we can do  
BinarySearch(a, L).  We maintain a search region 
-- all of the list between index LO and index HI.  
Initially LO=0 and HI=L.length-1.

At each step we compute MID = (LO+HI)/2 and 
compare a to the entry of L[MID].  If a is greater 
then we search the elements between MID+1
and HI; if a is lower we search between LO and 
MID-1.  We eventually get to a search region 
with only 1 element, and it is either a or it isn't.



Note that at each step we divide the search 
region in half, and we stop when it gets to size 1.  

n can be divided in half log2(n) times before it 
gets to 1 (e.g., if n is 16 the divisions have size 8, 
4, 2, and 1   24=16, so log2(16)=4). 

So BinarySearch(a, L) takes log2(n) comparisons, 
where n is the size of L.



Which is better when n is really big -- n or 
log2(n)??

n log2(n)

100 6

1000  (210) 10

1,000,000  (220) 20

1,000,000,000   (230) 30

It looks like log2(n) is winning here....



Example 2

Some of you know the BubbleSort algorithm.  
One way to sort a list is to repeatedly make 
passes from the first element to the last-1.  For 
each index i we compare the ith and (i+1)st

elements; if they are out of order interchange 
them.  Keep doing these passes until there is no 
reason to do an interchange, which means the 
data is completely in order.



How many steps will that take?  Note that in the 
first pass through the list, we end up with the 
largest element in the right location.  After that 
there is no need to compare the last element of 
the list with anything else, so we can stop the 
next pass one element sooner.  With n elements 
in the list we do (n-1) comparisons and at most 
(n-1) interchanges for the first pass.  The next 
pass we will do (n-2) comparisons; the next pass 
(n-3) and so forth.



Altogether in the worst case we will do this 
many comparisons and the same number of 
interchanges:

(n-1) + (n-2) + (n-3) + ..... + 1

It isn't hard to show that this sum comes to 

n*(n-1)/2.  



So we will do at most n(n-1)/2 comparisons and 
at most the same number of interchanges.  Each 
interchange takes 3 assignment statements.  So 
if we think of comparisons and assignments as 
both being basic operations, this means

4n(n-1)/2 = 2n(n-1) basic operations in the 
worst case.

Is that good?



We need some way to categorize the running 
times of algorithms.  The most common way is 
to look at broad categories.  The thing that 
stands out most for the function 2n(n-1) is that 
it is quadratic.  There are two aspects of this.



For one thing, for REALLY large values of n, such 
as n=1,000,000  2n(n-1) is pretty much the same 
thing as 2n2.

For another, what happens if we increase the 
size of the list by a factor of k, from n to kn?

The number of basic operations will increase by

a factor of 2(kn)2/2n2 = k2



So increasing the size of the list by a factor of 3 
increases the worst-case running time by a 
factor of 9; increasing the size of the list by a 
factor of 10 increases the running time by a 
factor of 100. 

We say that BubbleSort is a quadratic time 
algorithm.  Another way to say this is that the 
running time is O(n2) (also pronounced "order 
n2").  



In general, we say that an algorithm is O(f(n)) if 
there is a size N and a constant a so that for n > 
N the number of basic operations the algorithm 
does on an input of size n is no more than 
a*f(n).

BubbleSort is O(n2) because we showed that it 
does at most 2n(n-1) basic operations and 2n(n-
1) < 2n2.  



Note that looking at orders of growth allows us 
to make many simplifications:

5n3+3n2+177 is still O(n3)



The most common orders of growth, in order of 
increasing badness, are

constant O(1)

logarithmic O( log(n) )

linear O(n)

n*log(n) O( n*log(n) )

polynomial O( nk) for some k

exponential O(2n)



For logarithms, note that all logs are 
proportional, so it doesn't matter what base you 
use for the log.


